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Portfolio Selection with Mental Accounts and Estimation Risk

Abstract

In Das, Markowitz, Scheid, and Statman (2010), an investor divides his or her wealth among

mental accounts with short selling being allowed. For each account, there is a unique goal and

optimal portfolio. Our paper complements theirs by considering estimation risk. We theoretically

characterize the existence and composition of optimal portfolios within accounts. Based on simu-

lated and empirical data, there is a wide range of account goals for which such portfolios notably

outperform those selected with the mean-variance model for plausible risk aversion coeffi cients.

When short selling is disallowed, the outperformance still typically holds but to a considerably

lesser extent.
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1. Introduction

Das, Markowitz, Scheid, and Statman (2010, DMSS) develop a model that incorporates aspects

of both behavioral and mean-variance (hereafter ‘MV’) models. Like Shefrin and Statman (2000),

DMSS consider an investor who divides his or her wealth among mental accounts (hereafter ‘ac-

counts’) with motives such as retirement and bequest.1 For each account, short selling is allowed

and the optimal portfolio has maximum expected return subject to: (1) fully investing the wealth

allocated to the account; and (2) the probability of the account’s return being less than or equal to

some threshold return (e.g., −20%) not exceeding some threshold probability (e.g., 1%).2 Reflecting

different account motives, the threshold return and threshold probability (hereafter ‘thresholds’)

possibly vary across accounts. Nevertheless, optimal portfolios within accounts and the correspond-

ing aggregate portfolio are on the MV frontier of Markowitz (1952). These portfolios also satisfy

the safety-first criterion of Telser (1955).

When implementing a portfolio selection model in practice, an investor faces the risk of inac-

curately estimating the optimization inputs (i.e., expected returns, variances, and covariances of

available assets), which is referred to as estimation risk. While the literature has long recognized

estimation risk in the MV model (see, e.g., Bawa, Brown, and Klein (1979)), it has yet to recognize

estimation risk in the DMSS model. Our paper fills this gap.

We examine a model similar to the DMSS model, but an investor’s optimal portfolio within

a given account now has maximum estimated expected return subject to: (1) fully investing the

wealth allocated to the account; and (2) the estimated probability of the account’s return being

less than or equal to the threshold return not exceeding the threshold probability.3 Importantly,

1For an introduction to mental accounting, see Thaler (1985, 1999). Choi, Laibson, and Madrian (2009) provide empirical
support for mental accounting in 401(k) plans. Also, the business press suggests that investors should divide their wealth into
buckets dedicated to different goals so that they take the appropriate level of risk within each bucket; see, e.g., the article in
The Wall Street Journal, October 5, 2012, pp. C9—C10. This article refers to two examples of buckets: (1) one dedicated to a
car purchase in three years for which a relatively low level of risk would be appropriate; and (2) the other dedicated to tuition
payments in 15 years for which a higher level of risk would be appropriate. Note that the meaning of ‘buckets’ in the article
coincides with the meaning of ‘accounts’in our paper.

2Formally, the optimal portfolio within a given accountm solves maxw∈RN w ′µ subject to w ′1N = 1 and P [rw ≤ Hm] ≤ αm.
Here, w denotes a portfolio, N is the number of available assets, µ is the N × 1 vector of their expected returns, 1N is the
N × 1 unit vector, P [·] denotes probability, rw is the random return on portfolio w , Hm is the threshold return, and αm is the
threshold probability.

3Formally, the optimal portfolio within a given account m solves maxw∈RN w ′µε subject to w ′1N = 1 and P ε[rw ≤ Hm] ≤

1



we find that there is a wide range of thresholds for which the use of the DMSS model reduces

estimation risk relative to the use of the MV model with plausible risk aversion coeffi cients. When

short selling is allowed, we find that the DMSS model typically still reduces estimation risk (relative

to the MV model), but to a lesser extent.

We begin by theoretically characterizing the existence and composition of optimal portfolios

within accounts and the aggregate portfolio when short selling is allowed. First, we consider fixed

thresholds that do not depend on the estimated optimization inputs (but possibly depend on the

accounts). For example, the threshold return and probability for a given account might be −10%

and 5%. The existence of the optimal portfolio within a given account depends on these thresholds

and the estimated optimization inputs. If it exists, then it is on the estimated MV frontier. Hence,

it would be selected by a hypothetical investor with an objective function defined over estimated

expected return and variance for some risk aversion coeffi cient that also depends on the thresholds

and inputs. Similar results hold for the aggregate portfolio.

Second, we consider variable thresholds that depend on the estimated optimization inputs. For

example, the thresholds for a given account might be −7% and 5% for some inputs, and −9%

and 4% for other inputs. Unlike fixed thresholds, variable thresholds can be set so that optimal

portfolios within accounts and the aggregate portfolio: (1) exist regardless of the inputs; and (2)

would be selected by hypothetical investors with risk aversion coeffi cients that do not depend on

the inputs. As with fixed thresholds, the portfolios are on the estimated MV frontier.

Using simulated data, we then examine the existence and out-of-sample performance of the

portfolios. In doing so, we consider eight assets: (a) Treasury bonds; (b) corporate bonds; and (c)

the six size/book-to-market-based Fama-French equity portfolios.4 We obtain two main findings.

First, when fixed thresholds are used, optimal portfolios within accounts exist if and only if threshold

αm. Here, µε is an estimate of µ and P ε[·] denotes estimated probability.
4Each of the 1000 simulations of estimated optimization inputs that we use is based on either 60 or 120 draws from a

multivariate normal distribution with the mean vector and variance-covariance matrix associated with the asset monthly returns
in 1978—2014. To assess the out-of-sample performance of the 1000 optimal portfolios within a given account (one portfolio for
each simulation), we compute the average certainty equivalent return (CER) across simulations using the aforementioned mean
vector and variance-covariance matrix; see Section 4.1.
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returns are suffi ciently small and threshold probabilities are suffi ciently low. Second, there is a wide

range of thresholds for which optimal portfolios within accounts have notably better out-of-sample

performance than optimal portfolios in the MV model with plausible risk aversion coeffi cients.

We next use empirical data.5 Compared to the findings based on simulated data, there are two

main differences. First, optimal portfolios within accounts have lower out-of-sample performance.

Second, the extent to which their out-of-sample performance exceeds that of optimal portfolios in

the MV model is larger.

Using simulated and empirical data, we also examine the case where short selling is disallowed.

Our findings differ from those in the case where it is allowed in three main respects. First, there is a

larger set of fixed thresholds for which optimal portfolios within accounts exist. Second, regardless

of whether fixed or variable thresholds are used, their out-of-sample performance is notably lower.

Third, the extent to which their out-of-sample performance exceeds that of optimal portfolios in

the MV model is considerably smaller.

Our paper complements DMSS along three dimensions. First, we theoretically characterize the

existence and composition of optimal portfolios within accounts and the aggregate portfolio with

fixed thresholds while recognizing estimation risk. Second, we theoretically characterize the set of

variable thresholds for which the optimal portfolio within a given account: (i) exists regardless of

the estimated optimization inputs; and (ii) would be selected by an investor with a risk aversion

coeffi cient that does not depend on such inputs. Third, we examine the out-of-sample performance

of optimal portfolios within accounts and the aggregate portfolio with fixed and variable thresholds.

These dimensions are useful to investors who either have decided to implement the DMSS model

(e.g., in setting thresholds and finding optimal portfolios) or are considering doing so (e.g., in

assessing the relative out-of-sample performance of the DMSS and MV models).

5As with simulated data, we consider eight assets. In determining the estimated optimization inputs that correspond to
the beginning of each year in the period 1983—2014, we use the previous 60 months of asset returns. Optimal portfolios within
accounts and the aggregate portfolio are obtained by using such inputs and are assumed to be held during the forthcoming
year. In assessing the out-of-sample performance of each of these portfolios, we compute its CER based on the monthly returns
during this year and then compute its average CER across the 1983—2014 period. We proceed similarly when using 120 months
to determine the inputs; see Section 5.1.
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Also, our argument for justifying the use of the DMSS model complements theirs. Ours is

that it reduces estimation risk relative to the use of the MV model with plausible risk aversion

coeffi cients. Theirs relies on two assumptions: (1) investors specify account goals more precisely by

stating thresholds instead of risk aversion coeffi cients; and (2) investors identify thresholds more

precisely by stating them for portfolios within accounts instead of for the aggregate portfolio.

Our motivation for comparing the DMSS and MV models is threefold. First, since DMSS do

so in the absence of estimation risk, it is natural to also do so in the presence of estimation risk.

Second, in the case where short selling is allowed, while the literature notes the poor out-of-sample

performance of the MV model when using plausible risk aversion coeffi cients, it is of interest to see

if the DMSS model has notably better out-of-sample performance for a wide range of thresholds.

Third, since the literature notes that disallowing short selling reduces estimation risk in the MV

model, it is of interest to see if the DMSS model still typically outperforms the MV model when

short selling is disallowed.

Examinations of estimation risk within the DMSS and MV models differ in four respects. First,

while the DMSS investor has multiple accounts, the MV investor has a single account. Second, in

determining optimal portfolios, the former investor uses different thresholds for different accounts

whereas the latter uses a single risk aversion coeffi cient. Third, optimal portfolios in the DMSS

model might not exist when using fixed thresholds (they exist when using variable ones), but

those in the MV model always exist. Fourth, while the optimal portfolio within a given account

correponds to the optimal portfolio in the MV model for some risk aversion coeffi cient that depends

on the estimated optimization inputs (and on the thresholds), an MV investor utilizes a unique risk

aversion coeffi cient that does not depend on such inputs.

Other recent papers also examine models with accounts in the absence of estimation risk.

Alexander and Baptista (2011) consider an investor who delegates the management of his or her

wealth to portfolio managers. Baptista (2012) and Jiang, Ma, and An (2012) consider investors
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who face, respectively, background risk (from sources such as labor income) and exchange rate risk.

Our paper differs from theirs in three respects. First, the investor in our model faces estimation

risk (but does not delegate the management of their wealth to portfolio managers nor face either

background or exchange rate risk). Second, we consider variable thresholds. Third, we assess the

out-of-sample performance of optimal portfolios within accounts.

A brief review of the literature on estimation risk in the MV model is in order. In terms of out-

of-sample performance, Jorion (1986) finds that the use of shrinkage estimators for the optimization

inputs is beneficial relative to the use of classical estimators. Frost and Savarino (1988) find that

adding restrictions on portfolio weights reduces estimation risk. Best and Grauer (1991) show

that optimal portfolios are very sensitive to the expected returns of available assets. Noting that

such expected returns are diffi cult to estimate, Black and Litterman (1992) develop an approach in

which they depend on both investor views and equilibrium expected returns. Chan, Karceski, and

Lakonishok (1999) find that the estimation risk associated with the variance-covariance matrix is

notable but smaller than that associated with the expected return vector.

Jagannathan and Ma (2003) show that disallowing short selling reduces estimation risk in

the estimated minimum-variance portfolio even if the minimum-variance portfolio based on the

‘true’ variance-covariance matrix involves short positions. DeMiguel and Nogales (2009) show

that the weights of portfolios based on certain robust estimators are more stable over time than

those of the estimated minimum-variance portfolio, whereas the out-of-sample performance of the

former portfolios is comparable to or slightly better than that of the latter. Kan and Zhou (2007)

find that an optimal combination of (i) the risk-free asset, (ii) the estimated minimum-variance

portfolio in the absence of this asset, and (iii) the estimated tangency portfolio has better out-

of-sample performance than combinations of just (i) and (iii). Kan and Smith (2008) show that

the estimated MV frontier is a notably biased estimator for the ‘true’MV frontier and propose

an alternative estimator that reduces this bias. DeMiguel, Garlappi, and Uppal (2009) find that
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the equally-weighted portfolio has better out-of-sample performance than optimal portfolios from

the estimated MV model. Garlappi, Uppal, and Wang (2007) show that the optimal portfolio

in a model where the expected return vector is contained in some set of expected return vectors

and there is ambiguity aversion also has better out-of-sample performance. Michaud and Michaud

(2008) discuss the limitations of the MV model that concern its implementation in practice. Our

paper adds to this literature by finding that there is a wide range of thresholds for which the use

of the DMSS model reduces estimation risk relative to the use of the MV model with plausible risk

aversion coeffi cients.

We proceed as follows. Sections 2 and 3 theoretically characterize optimal portfolios within

accounts and the aggregate portfolio with short selling allowed and, respectively, fixed and variable

thresholds. Sections 4 and 5 assess their out-of-sample performance with, respectively, simulated

and empirical data. Section 6 extends Sections 4 and 5 to the case where short selling is disallowed.

Section 7 presents practical implications of our paper. Section 8 concludes. An online appendix

contains our proofs.

2. The model

Let N > 2 be the number of available assets. We assume that their returns have a multivariate

normal distribution.6 Let µ denote the N×1 vector of their expected returns. Its nth entry is asset

n’s expected return. We assume that µ is not proportional to the N × 1 unit vector, 1N , so that

at least two assets have different expected returns. Let Σ denote the N × N variance-covariance

matrix for asset returns. Its entry in row n1 and column n2 is the covariance between the returns

on assets n1 and n2. We assume that rank(Σ) = N .7

6Several related papers also assume that asset returns have a multivariate normal distribution. DMSS and Jiang, Ma,
and An (2012) do so in settings with multiple accounts where estimation risk is absent, whereas Kan and Zhou (2007) and
DeMiguel, Garlappi, and Uppal (2009) do so in settings with a single account where estimation risk is present. Nevertheless,
our results hold more generally in the case where asset returns are assumed to have a multivariate elliptical distribution (e.g., t
distribution) with finite first and second moments. For an examination of optimal portfolios within accounts when asset returns
are assumed to have non-elliptical distributions and estimation risk is absent, see Das and Statman (2013).

7The assumption that a risk-free asset is not available follows DMSS. Since they argue in favor of using their model, our
model follows theirs as closely as possible (except for the issue of estimation risk). Further motivation for the aforementioned
assumption can be found in, for example, Black (1972). Nevertheless, our results extend in a natural way to the case where a
risk-free asset is available.
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A portfolio is a N × 1 vector w with w ′1N = 1. Its nth entry is asset n’s weight. A positive

(negative) weight represents a long (short) position. Let rw denote portfolio w’s random return.

Its expected return and standard deviation are, respectively, E[rw ] ≡ w ′µ and σ[rw ] ≡
√
w ′Σw .

Let µε denote an estimate of µ. We assume that µε is not proportional to 1N so that at least

two assets have different estimated expected returns. Similarly, let Σε denote an estimate of Σ.

We assume that rank(Σε) = N . We refer to µε and Σε as the estimated optimization inputs. For

any given portfolio w , we refer to Eε[rw ] ≡ w ′µε and σε[rw ] ≡
√
w ′Σεw as its estimated expected

return and standard deviation, respectively.

2.1. The investor’s problem

Consider an investor who initially divides his or her wealth among a exogenously given number

of accounts, denoted by M ≥ 2. The M × 1 vector of fractions of wealth in the accounts is

exogenously given by y ∈ RM++ where y ′1M = 1 and 1M is the M × 1 unit vector.8 The investor

then allocates the wealth within each account among the same set of assets. However, the portion

of wealth within a given account that he or she allocates to any given asset possibly depends on

the account.

Fixing estimated optimization inputs µε and Σε, the optimal portfolio within account m solves:

max
w∈RN

w ′µε (1)

s.t. w ′1N = 1 (2)

P ε[rw ≤ Hm] ≤ αm, (3)

where P ε[ · ] denotes estimated probability, Hm ∈ R is the threshold return, and αm ∈ (0, 1/2) is

the threshold probability.9 Note that constraint (3) is tighter when either Hm is larger or αm is

8The assumption that the number of accounts and the fraction of wealth in each account are exogenously given follows
DMSS. As noted earlier, we follow them as closely as possible (except for the issue of estimation risk). Note that allowing the
investor to endogenously determine the number of accounts and the fraction of wealth in each account might be inconsistent
with the idea of having multiple accounts. Indeed, this idea breaks down if the investor ends up allocating 100% of his or her
total wealth to a single account.

9Here, Hm and αm are exogenous. Hence, given the estimated optimization inputs, the composition of the optimal portfolio
within account m does not depend on the level of estimation risk (which depends on, for example, the number of months used
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lower. The rest of Section 2 uses fixed thresholds that do not depend on the estimated optimization

inputs. Section 3 uses variable thresholds that depend on such inputs.

Problem (1) subject to constraints (2) and (3) extends the problem that DMSS examine. First,

the assumption that the investor maximizes the account’s estimated expected return extends their

assumption that he or she maximizes its ‘true’ expected return. Second, the assumption that

asset weights sum to one follows DMSS. Third, the assumption that the investor faces a constraint

involving the estimated distribution of the account’s return extends their assumption that he or

she faces a constraint involving its ‘true’distribution.

Fix any portfolio w . Its estimated Value-at-Risk (VaR) at confidence level 1− α is:

V ε[1− α, rw ] ≡ zασε[rw ]− Eε[rw ], (4)

where zα ≡ −Φ−1(α) and Φ(·) denotes the standard normal cumulative distribution function (cdf).

Note that zα > 0 if α ∈ (0, 1/2). Also, an increase in the value of α reduces the size of zα.

Portfolio w satisfies constraint (3) if and only if:

V ε[1− αm, rw ] ≤ −Hm. (5)

It follows from Eq. (4) that constraint (5) is equivalent to:

Eε[rw ] ≥ Hm + zαmσ
ε[rw ]. (6)

Hence, portfolios that lie on or above a line with intercept Hm and slope zαm in (Eε[rw ], σε[rw ])

space satisfy constraint (3), whereas those that lie below it do not; see Fig. 1A.

2.2. Optimal portfolios within accounts

We now proceed to characterize the existence and composition of optimal portfolios within

accounts. Fixing the estimated optimization inputs, a portfolio is on the estimated MV frontier if

to determine these inputs). Sections 5 and 6 examine the case where Hm and αm are endogenously set by maximizing the
out-of-sample performance of this portfolio. In such a case, given the estimated optimization inputs, the composition of the
portfolio depends on the level of estimation risk.
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it minimizes estimated variance for some level of estimated expected return. For any level Eε ∈ R,

the portfolio on this frontier is:

w ε
Eε ≡ φεEεw ε

0 + (1− φεEε)w ε
1. (7)

Here, φεEε ≡
Eε−Bε/Aε

Aε/Cε−Bε/Aε where A
ε ≡ 1′N (Σε)−1µε, Bε ≡ (µε)′(Σε)−1µε, Cε ≡ 1′N (Σε)−11N , and

Dε ≡ BεCε−(Aε)2 are constants with Cε and Dε being positive. Portfolio w ε
0 ≡

(Σε)−11N
Cε has min-

imum estimated variance among all portfolios. Portfolio w ε
1 ≡

(Σε)−1µε

Aε lies in (Eε[rw ], (σε[rw ])2)

space where a ray from the origin crosses the curve representing portfolios on the estimated MV

frontier after passing through w ε
0. As the hyperbola in Fig. 1A illustrates, these portfolios can be

represented in (Eε[rw ], σε[rw ]) space by using:

σε[rw ] =

√
1/Cε +

(Eε[rw ]−Aε/Cε)2
Dε/Cε

. (8)

Hence, the asymptotic slope of the hyperbola is
√
Dε/Cε. Moreover, the estimated expected return

of portfolio w ε
0 is A

ε/Cε and its estimated variance is 1/Cε.10

Let:

αε ≡ Φ(−
√
Dε/Cε). (9)

Since Dε/Cε > 0, Eq. (9) implies that αε ∈ (0, 1/2). Also, the size of αε depends on the values of

µε and Σε (through terms Cε and Dε). For any α < αε, let:

Hε
α ≡ Aε/Cε −

√
z2α −Dε/Cε

Cε
. (10)

Using Eq. (10), the size of Hε
α depends on the values of α as well as µ

ε and Σε (through terms

Aε, Cε, and Dε). If the confidence level is 1− α, then the portfolio with minimum estimated VaR

among all portfolios has an estimated VaR of −Hε
α; see the Appendix (Lemma 1).

Next, we characterize the existence and composition of optimal portfolios within accounts.
10The characterization of the estimated MV frontier in Eqs. (7) and (8) is similar to the characterization of the MV frontier

in the absence of estimation risk; see, e.g., Huang and Litzenberger (1988, Ch. 3, hereafter ‘HL’). Besides the issue of estimation
risk, our theoretical results differ in three respects. First, we consider an investor with multiple accounts, whereas HL consider
an investor with a single account. Second, while our investor has different goals for different accounts, HL’s investor has a single
goal. Third, for a given account, ours maximizes its estimated expected return subject to a constraint involving the estimated
distribution of the account’s return, whereas HL’s maximizes an MV objective function.
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Theorem 1. Fix any account m ∈ {1, ...,M}. (i) If either (a) αm ≥ αε, or (b) αm < αε and

Hm > Hε
αm, then the optimal portfolio within account m does not exist. (ii) If αm < αε and

Hm ≤ Hε
αm, then it exists and is given by:

w ε
m ≡ φεmw ε

0 + (1− φεm)w ε
1, (11)

where φεm ≡
Eεm−Bε/Aε

Aε/Cε−Bε/Aε . Here, its estimated expected return is:

Eεm ≡ Aε/Cε +

√
(Dε/Cε)

[
(σεm)2 − 1/Cε

]
, (12)

and its estimated standard deviation is:

σεm ≡
zαm (Aε/Cε −Hm) +

√
(Dε/Cε)

[
(Aε/Cε −Hm)2 −

(
z2αm −Dε/Cε

)
/Cε

]
z2αm −Dε/Cε

. (13)

Using Theorem 1, the existence of the optimal portfolio within account m (w ε
m) depends on

the values of αm and Hm as well as µε and Σε (through terms αε and Hε
αm). If αm ≥ αε, then

it does not exist regardless of the size of Hm and Hε
αm . As panels A and B of Fig. 1 show, its

non-existence is due to the fact that estimated expected returns of portfolios satisfying constraint

(6) do not have a finite upper bound. If αm < αε, then its existence depends on the size of Hm

and Hε
αm . In the case where Hm > Hε

αm , it does not exist. As panel C shows, its non-existence is

due to the fact that no portfolio satisfies constraint (6). In the case where Hm ≤ Hε
αm , it exists.

Panel D shows that it lies at the point pm where the line is tangent to the curve when Hm = Hε
αm .

Similarly, panel E shows that it lies at the point pm where the line crosses the top half of the curve

when Hm < Hε
αm .

Theorem 1 implies that the use of fixed thresholds requires that they are carefully set so that

optimal portfolios within accounts exist. Fixing the estimated optimization inputs, if the optimal

portfolio within a given account m does not exist with fixed thresholds αm and Hm, then Theorem

1 is useful to reset the thresholds so that it does exist. Alternatively, as we show in Section 5, the

use of variable thresholds guarantees that optimal portfolios within accounts exist.
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When w ε
m exists, it is on the estimated MV frontier; see Eqs. (7) and (11). Using Eqs. (12)

and (13), the size of its estimated expected return Eεm and standard deviation σεm depends on

the values of αm, Hm, µε, and Σε. While the use of a higher value of αm loosens constraint (6)

and thus increases their size, the use of a larger value of Hm tightens it and thus decreases their

size.11 The effect of µε and Σε on the size of Eεm and σεm occurs through terms Aε/Cε, 1/Cε,

and Dε/Cε. A larger value of Aε/Cε shifts the hyperbola representing portfolios on the estimated

MV frontier upward and thus increases their size. In contrast, a larger value of 1/Cε shifts the

hyperbola rightward and thus decreases their size. A larger value of Dε/Cε shifts the top half of

the hyperbola upward and thus increases their size.

Since w ε
m is on the estimated MV frontier, it solves:

max
w∈RN

w ′µε − γi,εm
2
w ′Σεw (14)

s.t. w ′1N = 1 (15)

for some γi,εm > 0. We refer to γi,εm as the risk aversion coeffi cient implied by the optimal portfolio

within account m. Corollary 1 provides the value of γi,εm .

Corollary 1. Fix any account m ∈ {1, ...,M} with αm < αε and Hm ≤ Hε
αm . The risk aversion

coeffi cient implied by the optimal portfolio within account m is:

γi,εm =
Dε/Cε

Eεm −Aε/Cε
. (16)

Using Eqs. (12), (13), and (16), the size of γi,εm depends on the values of αm, Hm, µε, and Σε.

Since the use of a higher value of αm increases the size of Eεm, it decreases that of γ
i,ε
m . In contrast,

since the use of a larger value of Hm decreases the size of Eεm, it increases that of γ
i,ε
m . The effect of

µε and Σε on the size of γi,εm occurs through terms Aε/Cε, 1/Cε, and Dε/Cε. Eqs. (12) and (16)

11 In assessing the effect of an increase in a given term on the size of another term, we assume here (and hereafter) that the
values of other terms remain unchanged.
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imply that:

γi,εm =

√
Dε/Cε

(σεm)2 − 1/Cε
. (17)

Since a larger value of Aε/Cε increases the size of σεm, it decreases that of γ
i,ε
m ; see Eq. (17). In

contrast, since a larger value of 1/Cε decreases the size of Eεm, it increases that of γ
i,ε
m ; see Eq.

(16). A larger value of Dε/Cε might either decrease, not affect, or increase the size of γi,εm ; note

that the right-hand side of Eq. (16) is affected by the value of Dε/Cε in both the numerator and

denominator (through term Eεm given by Eq. (12)).

2.3. Aggregate portfolio

If optimal portfolios within accounts exist, then aggregate portfolio w ε
a ≡

∑M
m=1 ymw

ε
m also

exists. We characterize it next.

Theorem 2. Suppose that αm < αε and Hm ≤ Hε
αm for any account m ∈ {1, ...,M}. Then, the

aggregate portfolio is given by:

w ε
a = φεaw

ε
0 + (1− φεa)w ε

1, (18)

where φεa ≡
∑M

m=1 ymφ
ε
m. Its estimated expected return is:

Eεa ≡
M∑
m=1

ymE
ε
m, (19)

and its estimated standard deviation is:

σεa ≡

√
1/Cε +

(Eεa −Aε/Cε)
2

Dε/Cε
. (20)

When aggregate portfolio w ε
a exists, it is on the estimated MV frontier; see Eqs. (7) and (18).

Using Eqs. (19) and (20), the size of its estimated expected return Eεa and standard deviation

σεa depends on the fractions of wealth in the accounts, the thresholds (which affect E
ε
m for m =

1, ...,M), and the estimated optimization inputs.

12



Since w ε
a is on the estimated MV frontier, it solves:

max
w∈RN

w ′µε − γi,εa
2
w ′Σεw (21)

s.t. w ′1N = 1 (22)

for some γi,εa > 0. We refer to γi,εa as the risk aversion coeffi cient implied by the aggregate portfolio.

Corollary 2 provides the value of γi,εa .

Corollary 2. Suppose that αm < αε and Hm ≤ Hε
αm for any m ∈ {1, ...,M}. Then, the risk

aversion coeffi cient implied by the aggregate portfolio is:

γi,εa =
Dε/Cε

Eεa −Aε/Cε
. (23)

Using Eqs. (12), (13), (19), and (23), the size of γi,εa depends on the fractions of wealth in the

accounts, the thresholds for the accounts, and the estimated optimization inputs.

3. Variable thresholds

We now use variable thresholds, which depend on the estimated optimization inputs as noted

earlier. In doing so, we focus on thresholds for which optimal portfolios within accounts exist

regardless of these inputs and imply risk aversion coeffi cients that also do not depend on the inputs.

Our motivation is twofold. First, when using fixed thresholds, optimal portfolios within accounts

might not exist (see Theorem 1). Second, when using variable thresholds, optimal portfolios within

accounts coincide with optimal portfolios in the MV model for risk aversion coeffi cients that do not

depend on the inputs.12 The latter portfolios can thus be found by using such thresholds.

12Note that when fixed thresholds are used, they are primitives for characterizing the behavior of the investor within the
accounts. In contrast, when variable thresholds are used, a possible interpretation is that the primitives for characterizing this
behavior are risk aversion coeffi cients that do not depend on the estimated optimization inputs. While our motivation for using
variable thresholds is not based on this interpretation, Kan and Zhou (2007) and DeMiguel, Garlappi, and Uppal (2009) develop
settings with a single account and estimation risk where optimal portfolios are obtained by using an objective function with a
risk aversion coeffi cient that does not depend on these inputs. Besides the use of the two types of thresholds (i.e., fixed and
variable) having different implications for the existence of optimal portfolios within accounts and the size of their implied risk
aversion coeffi cients as discussed earlier, these two types of thresholds also differ in terms of complexity. By design, variable
thresholds are more complex than fixed thresholds in that the former need to be computed whereas the latter are given. Since
each type of thresholds is of interest on its own, we present results for both types.
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3.1. Optimal portfolios within accounts

For any γi > 0, let:

αε,γ
i ≡ Φ

−
√
Dε + (γi)2

Cε

 . (24)

Since Cε > 0, Dε > 0, and γi > 0, Eq. (24) implies that αε,γ
i ∈ (0, 1/2). Also, the size of αε,γ

i

depends on the values of µε and Σε (through terms Cε and Dε) as well as γi.

Next, we characterize optimal portfolios within accounts.

Theorem 3. Fix any account m ∈ {1, ...,M} and any constant γim > 0. Suppose that the thresholds

are given by α̃m and H̃m, where:

α̃m ≤ αε,γ
i
m (25)

and

H̃m =
Aε

Cε
+

Dε

γimC
ε
− zα̃m

√
1

Cε
+

Dε

(γim)2Cε
.13 (26)

Then, the optimal portfolio within account m exists and is given by:

w̃ ε
m ≡ φ̃

ε

mw
ε
0 + (1− φ̃εm)w ε

1, (27)

where φ̃
ε

m ≡
Ẽεm−Bε/Aε

Aε/Cε−Bε/Aε . Here, its estimated expected return and standard deviation are, respec-

tively:

Ẽεm ≡
Aε

Cε
+

Dε

γimC
ε

(28)

and:

σ̃εm ≡
√

1

Cε
+

Dε

(γim)2Cε
, (29)

where γim is its implied risk aversion coeffi cient.14

13The use of the tilde (‘˜ ’) in α̃m indicates that α̃m is variable. While α̃m depends on the values of µε and Σε as well as

γim, for brevity we write ‘̃αm’instead of ‘̃α
ε,γim
m .’ The tilde is similarly used in H̃m.

14While there are always variable thresholds α̃m and H̃m for which the optimal portfolio within account m exists regardless
of the estimated optimization inputs and has a given implied risk aversion coeffi cient γim that does not depend on such inputs,

α̃m cannot exceed αε,γ
i
m ; see Eq. (25). First, assume that α̃m ≥ αε. Note that the optimal portfolio within account m does

not exist; see Theorem 1. Second, assume that αε,γ
i
m < α̃m < αε. While the optimal portfolio within account m lies on the

estimated MV frontier, it cannot lie below the portfolio with minimum estimated VaR at confidence level 1− α̃m. However, the
portfolio that solves problem (14) subject to constraint (15) with γi,εm = γim lies below the portfolio with minimum estimated
VaR at confidence level 1− α̃m.
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Theorem 3 implies that there is a set of variable thresholds for which the optimal portfolio

within a given account m: (i) exists regardless of the estimated optimization inputs; and (ii) has a

given implied risk aversion coeffi cient γim that does not depend on these inputs. For fixed inputs,

this set has infinitely many elements, but each of these elements leads to the same optimal portfolio

with account m. Intuitively, Fig. 1E shows that this portfolio lies where the line crosses the top

half of the hyperbola; see point pm. However, there are infinitely many lines with ‘appropriate’

slopes and vertical intercepts (corresponding to ‘appropriate’threshold probabilities and returns,

respectively) that also cross it at pm.

Note that the optimal portfolio within account m, w̃ ε
m, is on the estimated MV frontier; see

Eqs. (7) and (27). Using Eqs. (28) and (29), the size of its estimated expected return Ẽεm and

standard deviation σ̃εm depends on the values of γim, µ
ε, and Σε. A larger value of γim decreases

their size.15 The effect of µε and Σε on the size of Ẽεm occurs through terms Aε/Cε and Dε/Cε.

A larger value of either term increases its size. Similarly, the effect of µε and Σε on the size of σ̃εm

occurs through terms 1/Cε and Dε/Cε. A larger value of either term increases its size.

3.2. Aggregate portfolio

Next, we characterize the composition of the aggregate portfolio.

Theorem 4. For any account m ∈ {1, ...,M}, suppose that α̃m and H̃m satisfy, respectively, Eqs.

(25) and (26) where γim > 0. Then, the aggregate portfolio is:

w̃ ε
a ≡ φ̃

ε

aw
ε
0 + (1− φ̃εa)w ε

1, (30)

where φ̃
ε

a ≡
∑M

m=1 ymφ̃
ε

m. Its estimated expected return and standard deviation are:

Ẽεa ≡
Aε

Cε
+

Dε

γiaC
ε

(31)

15 In deriving this partial equilibrium result, we assume that µε and Σε remain unchanged (see footnote 11). An examination
of a general equilibrium model with accounts and estimation risk is left for future research.
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and:

σ̃εa ≡
√

1

Cε
+

Dε

(γia)
2Cε

, (32)

respectively, where γia ≡
(∑M

m=1 ym/γ
i
m

)−1
is its implied risk aversion coeffi cient.

Note that aggregate portfolio w̃ ε
a is on the estimated MV frontier; see Eqs. (7) and (30). Using

Eqs. (31) and (32), the size of its estimated expected return Ẽεa and standard deviation σ̃
ε
a depends

on the fractions of wealth in the accounts, the implied risk aversion coeffi cients of optimal portfolios

within accounts, and the estimated optimization inputs.

4. Simulated data

In this section, we use simulated data to examine the existence and out-of-sample performance

of optimal portfolios within accounts and the aggregate portfolio. As we explain shortly, the use

of simulated data allows us to consider the case where the first two moments of the distribution

of asset returns are assumed to be constant over time (Section 5 considers the case where they

possibly vary over time).

4.1. Methodology

Our methodology takes eight steps. In step 1, we specify the available assets: (a) Treasury

bonds; (b) corporate bonds; and (c) the six size/book-to-market-based Fama-French equity port-

folios.16 Returns on Treasury and corporate bonds are extracted from Bloomberg by using the

corresponding Bank of America Merrill Lynch indices. Returns on the Fama-French equity port-

folios are obtained from Kenneth French’s website. Table 1 presents summary statistics on the

monthly asset returns during 1978—2014.

In step 2, we specify the accounts. We consider three accounts (m = 1, 2, 3).17 Also, we assume

that the fractions of wealth in these accounts are given by (y1, y2, y3) = (40%, 30%, 30%).18

16 In illustrating their theoretical results, DMSS use three assets with one of them being analogous to a bond and the other
two being analogous to stocks. Similarly, we use assets that involve bonds and stocks.
17 In illustrating their theoretical results, DMSS also consider three accounts.
18The results for aggregate portfolios are similar when using other reasonable values for the fractions of wealth in the accounts.

Note that the results for optimal portfolios within accounts are not affected by the values of such fractions.
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In step 3, we obtain 60 draws from a multivariate normal distribution with: (1) a mean vector

that corresponds to the average returns in the first row of Table 1; and (2) a variance-covariance

matrix that corresponds to the standard deviations and the correlation coeffi cients in, respectively,

the second and last eight rows. In step 4, we use the 60 draws to obtain simulation 1 of the estimated

optimization inputs. In step 5, we use such inputs to examine the existence of optimal portfolios

within accounts. When they exist, we find their composition and implied risk aversion coeffi cients

as well as the composition of the aggregate portfolio and its implied risk aversion coeffi cient. In

step 6, we repeat steps 3—5 for simulations 2, ..., 1000 of the estimated optimization inputs. In step

7, we compute the average CER of the 1000 optimal portfolios within each account (one portfolio

for each simulation). Let w ε
m,s denote the optimal portfolio within account m in simulation s for

m = 1, 2, 3 and s = 1, ..., 1000. For any accountm ∈ {1, 2, 3} and any risk aversion coeffi cient γ > 0,

the average CER of portfolios {w ε
m,s}1000s=1 is CER

ε
m,γ ≡

∑1000

s=1
E[rwεm,s ]−

γ

2
(σ[rwεm,s ])

2

1000 .19 Here, E[rwεm,s ]

and σ[rwεm,s ] are obtained by using the mean vector and variance-covariance matrix noted in step 3.

Hence, the first two moments of the distribution of asset returns are assumed to be constant across

simulations. Similarly, we compute the average CER of the 1000 aggregate portfolios (again, one

portfolio for each simulation). In step 8, we repeat steps 3—7 by using 120 (instead of 60) draws.20

4.2. Optimal portfolios within accounts

This section considers optimal portfolios within accounts.

4.2.1 Fixed thresholds

We begin by examining the existence of optimal portfolios within accounts. Fig. 2 reports the

fraction of simulations for which the optimal portfolio within a given account m exists as a function

of threshold probability αm and threshold return Hm. Panels A and B use, respectively, 60 and

19Similar results are obtained when using Sharpe ratios (instead of CERs) to assess out-of-sample performance. Our reported
results use CERs for both brevity and consistency with the fact that there is no risk-free asset in the DMSS model (we obtain
monthly returns on Treasury Bills from Kenneth French’s website to calculate these ratios). In a setting with a single account
and estimation risk, Kan and Zhou (2007) argue in favor of using CERs instead of Sharpe ratios to assess out-of-sample
performance.
20We also use 180 draws. The results mainly differ from those reported for the cases of 60 and 120 draws in that optimal

portfolios within accounts and the aggregate portfolio have larger average CERs.
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120 draws. Four results can be seen. First, the fraction is 0% (i.e., there is no simulation for which

the portfolio exists) if either: (i) αm is suffi ciently low and Hm is suffi ciently large; or (ii) αm is

suffi ciently high. Second, the fraction is strictly between 0% and 100% (i.e., the portfolio exists in

some but not all simulations) if either: (a) αm is suffi ciently low and Hm is within some relatively

small range; or (b) αm is within some relatively large range. Third, the fraction is 100% (i.e., the

portfolio exists in all simulations) if αm is suffi ciently low and Hm is suffi ciently small. Fourth, the

size of the set of thresholds for which the fraction is 100% increases in the number of draws. Hence,

thresholds should be carefully set so that optimal portfolios within accounts exist, particularly when

using a relatively small number of observations to determine the estimated optimization inputs.

Next, we assess the out-of-sample performance of optimal portfolios within accounts. Table 2

shows their average CERs.21 In computing the average CERs for accounts 1, 2, and 3, we use risk

aversion coeffi cients of, respectively, 4, 3, and 1.22 In the first and second set of three columns to the

right of the ‘Account’column, the number of draws is, respectively, 60 and 120. Panel A uses fixed

thresholds. In the first three rows, they are exogenously given by (α1, α2, α3) = (1%, 5%, 10%) and

(H1, H2, H3) = (−5%,−8%,−10%). Note that average CERs are all positive.23 Also, they increase

in the number of draws (due to the estimated optimization inputs becoming more precise).24

We now examine the relation between the average CERs and the values of thresholds. Using

threshold probabilities given by (α1, α2, α3) = (1%, 5%, 10%), panels A and B of Fig. 3 show the

21Average CERs are well-defined since we compute tem only for thresholds such that optimal portfolios within accounts exist
in all simulations. In general, however, when fixed thresholds are used, there is a positive probability of obtaining a simulation
for which the optimal portfolio within a given account does not exist. Theorem 1 says that the optimal portfolio within account
m does not exist if either: (i) αm ≥ αε (since estimated expected returns of portfolios satisfying constraint (6) do not have
a finite upper bound); or (ii) αm < αε and Hm > Hαεm (since no portfolio satisfies constraint (6)). However, the probability
of non-existence is zero if: (1) asset weights are bounded; and (2) for each simulation where αm < αε and Hm > Hαεm , the
threshold return increases to a value not exceeding Hαεm . While (1) guarantees that estimated expected returns of portfolios
satisfying constraint (6) have a finite upper bound, (2) guarantees that there is a portfolio satisfying constraint (6). When
implementing the DMSS model in practice, conditions (1) and (2) are realistic.
22These coeffi cients are reasonable in the context of related work. In the numerical example of DMSS, optimal portfolios

within accounts have implied risk aversion coeffi cients of 3.80, 2.71, and 0.88. Moreover, Kan and Zhou (2007) and DeMiguel,
Garlappi, and Uppal (2009) consider risk aversion coeffi cients of, respectively, 3 and 1.
23 In order to reduce estimation risk within the MV model, some researchers suggest the use of either the estimated minimum-

variance portfolio (see, e.g., Chan, Karceski, and Lakonishok (1999) and Jagannathan and Ma (2003)) or the equally-weighted
portfolio (see, e.g., DeMiguel, Garlappi, and Uppal (2009)). While a detailed horse race between the performance of such
portfolios and that of optimal portfolios within accounts is beyond the scope of our paper, we find that the latter portfolios
typically outperform the former with some exceptions in the case where short selling is disallowed and empirical data are used.
24This finding does not necessarily suggest the use of a sample with the largest possible size to determine the estimated

optimization inputs. For example, Sharpe (2000, p. 179) notes that there is an increasing likelihood that the underlying
probability distribution is unstable as the sample size increases, resulting in increasingly unreliable estimates.
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average CERs for various threshold returns with, respectively, 60 and 120 draws. In each panel, the

solid, dashed, and dotted lines represent accounts 1, 2, and 3, respectively. In both panels, average

CERs initially increase in the threshold return, but then decrease. Similarly, using threshold returns

given by (H1, H2, H3) = (−5%,−8%,−10%), panels C and D show the average CERs for various

threshold probabilities with, respectively, 60 and 120 draws. In both panels, average CERs initially

increase or are relatively constant in the threshold probability, but then sharply decrease.

In the middle three rows of Table 2A, threshold probabilities are exogenous as in the first three

rows whereas threshold returns are endogenously set by maximizing the average CERs of optimal

portfolios within accounts. In setting them, we compute the average CER for each element in

an appropriate grid of threshold returns and then identify the element that leads to the largest

average CER.25 Note that endogenous threshold returns decrease in the number of draws. In the

case of accounts 1, 2, and 3, the increases in average CERs arising from using endogenous threshold

returns instead of exogenous ones (along with exogenous threshold probabilities) are, respectively:

(a) 0.13%, 0.02%, and 0.15% with 60 draws; and (b) 0.33%, 0.03%, and 0.90% with 120 draws.

In the last three rows, threshold returns are exogenous as in the first three rows whereas thresh-

old probabilities are endogenously set by maximizing the average CERs of optimal portfolios within

accounts. In setting them, we compute the average CER for each element in an appropriate grid of

threshold probabilities and then identify the element that leads to the largest average CER. Note

that endogenous threshold probabilities increase in the number of draws. In the case of accounts

1, 2, and 3, the increases in average CERs arising from using endogenous threshold probabilities

instead of exogenous ones (along with exogenous threshold returns) are respectively: (a) 0.12%,

25Recognizing that the values of the thresholds that maximize average CERs generally depend on the ‘true’ optimization
inputs and such inputs are not precisely known, these values cannot be exactly determined in practice. However, assuming that
the ‘true’optimization inputs in practice are relatively ‘close’to the ‘true’optimization inputs in our paper, it is of interest to
examine such values for three reasons. First, the values of the thresholds that maximize average CERs in our paper provide
some indication on the kinds of values that maximize average CERs in practice. Second, the use of the former values allow
us to obtain a rough upper bound on the benefit arising from considering estimation risk in the DMSS model (by comparing
average CERs with endogeneous and exogenous thresholds). Third, the use of the aforementioned values also allow us to
obtain a rough upper bound on the benefit arising from using the DMSS model instead of the MV model with plausible risk
aversion coeffi cients. An important point of our paper is that for a wide range of thresholds the use of the DMSS model reduces
estimation risk relative to the use of the MV model with plausible risk aversion coeffi cients. This point does not rely on the
results based on the values of the thresholds that maximize average CERs.
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0.03%, and 0.06% with 60 draws; and (b) 0.32%, 0.03%, and 0.76% with 120 draws.

We now examine the size of the risk aversion coeffi cients implied by optimal portfolios within

accounts. Panels A, B, and C of Fig. 4 provide box plots of such coeffi cients for accounts 1, 2,

and 3, respectively.26 Columns (1) and (2) use the thresholds in the first three rows of Table 2A

and, respectively, 60 and 120 draws. In each panel, the median coeffi cients for accounts 1, 2, and

3 notably exceed the risk aversion coeffi cients that are used to compute their average CERs (i.e.,

4, 3, and 1, respectively).27 Also, note the wide range of implied risk aversion coeffi cients in each

column. Hence, when estimation risk is present, the use of the DMSS model with fixed thresholds

differs considerably from the use of the MV model in which the risk aversion coeffi cient is fixed.

Similar results hold in columns (3) and (4) as well as columns (5) and (6), which use the same

thresholds as the middle and last three rows of Table 2A, respectively.

4.2.2 Variable thresholds

Of particular interest is the out-of-sample performance of optimal portfolios in the MV model.

As noted earlier, optimal portfolios within accounts with variable thresholds coincide with optimal

portfolios in the MV model. Hence, we now assess the out-of-sample performance of the former

portfolios.

In the first three rows of Table 2C, variable thresholds are set so that the implied risk aversion

coeffi cients of the optimal portfolios within accounts 1, 2, and 3 are exogenously given by, respec-

tively, 4, 3, and 1. As with fixed thresholds, we use risk aversion coeffi cients of 4, 3, and 1 to

compute the average CERs for accounts 1, 2, and 3, respectively. Note that the resulting average

CERs are smaller than those of optimal portfolios within accounts for the fixed thresholds in Table

26These and subsequent box plots exclude outliers (if any) via Winsorization. Here, an outlier is defined as a value that is
above (below) the upper (lower) quartile by an amount that exceeds 1.5 times the size of the interquartile range. Note that the
three horizontal lines in a box represent the lower quartile, median, and upper quartile. The dashed vertical lines extending
from each end of the box show the range. Hence, the horizontal line at the bottom (top) of the lower (upper) dashed vertical
line represents the lowest (highest) value.
27Note that the median coeffi cient for account 1 exceeds that for account 2, which in turn exceeds that for account 3. This

result can be understood with three observations. First, the threshold probability of account 1 is lower than that of account 2,
which in turn is lower than that of account 3. Second, the threshold return of account 1 is larger than that of account 2, which
in turn is larger than that of account 3. Third, as discussed earlier, the probability constraint given by Eq. (3) is tighter when
either the threshold probability is lower or the threshold return is larger.
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2A. More generally, the former average CERs are smaller than the latter for a wide range of fixed

thresholds (see panels A—D of Fig. 3). Consider the case of 60 draws. The first three rows of

Table 2C report negative average CERs for optimal portfolios in the MV model with risk aversion

coeffi cients of 4, 3, and 1. In comparison, panels A and C of Fig. 3 show positive average CERs

for optimal portfolios within accounts with a wide range of fixed thresholds. For example, consider

account 1. The solid line of panel A shows that the average CER is positive if the threshold prob-

ability is α1 = 1% and the threshold return H1 ranges from about −21% to −5%. Also, the solid

line of panel C shows that it is positive if the threshold return is H1 = −5% and the threshold

probability α1 ranges from 1% to about 14%. Similar results hold for accounts 2 and 3.

Consider now the case of 120 draws. While the first three rows of Table 2C now report positive

average CERs for optimal portfolios in the MV model with risk aversion coeffi cients of 4, 3, and 1,

it can be seen that they are still smaller than those of optimal portfolios within accounts for a wide

range of fixed thresholds (see panels B and D of Fig. 3). For example, consider the case of account

1. The first row of Table 2C reports an average CER of 1.03% for the optimal portfolio in the MV

model for a risk aversion coeffi cient of 4. In comparison, the solid line of Fig. 3B indicates that the

average CER of the optimal portfolio within account 1 exceeds 1.03% if the threshold probability

is α1 = 1% and the threshold return H1 ranges from about −21% to −5%. Also, the solid line

of Fig. 3D indicates that the average CER of this portfolio exceeds 1.03% if the threshold return

is H1 = −5% and the threshold probability α1 ranges from 1% to about 16%. Hence, for a wide

range of fixed thresholds, the use of the DMSS model reduces estimation risk relative to the use of

the MV model with plausible risk aversion coeffi cients.

The intuition for the reduction in estimation risk is as follows. Since the estimated optimization

inputs are imprecise, there is considerable estimation risk when using the MV model with plausible

risk aversion coeffi cients. Hence, the use of larger risk aversion coeffi cients reduces this risk.28 As

28Recall that the optimal portfolio in the MV model is a combination of wε0 and w
ε
1; see Eq. (7). Noting that w

ε
0 depends

solely on Σε and wε1 depends on both µ
ε and Σε, wε0 is subject to less estimation risk than w

ε
1. Since the use of larger risk

aversion coeffi cients leads the optimal portfolio to be closer to wε0 and w
ε
0 is subject to less estimation risk than w

ε
1, the use of
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noted earlier, the use of the DMSS model with the fixed thresholds in Table 2A is equivalent to the

use of the MV model with larger risk aversion coeffi cients. Therefore, the use of the former model

with these thresholds reduces estimation risk relative to the use of the latter with plausible risk

aversion coeffi cients.

We emphasize that the increase in average CER arising from using the DMSS model instead

of the MV model depends on thresholds, risk aversion coeffi cients, and the number of draws.29

For exogenous thresholds as well as risk aversion coeffi cients of 4, 3, and 1, the increases are,

respectively: (a) 1.70%, 2.41%, and 7.08% with 60 draws; and (b) 0.19%, 0.66%, and 1.14% with

120 draws.30 Also, for exogenous threshold probabilities and endogenous threshold returns as well

as risk aversion coeffi cients of 4, 3, and 1, the increases are, respectively: (a) 1.83%, 2.43%, and

7.23% with 60 draws; and (b) 0.52%, 0.69%, and 2.04% with 120 draws. Similar results hold with

endogenous threshold probabilities and exogenous threshold returns.

Fig. 5 shows the relation between the average CERs of optimal portfolios within accounts and

the implied risk aversion coeffi cients associated with the variable thresholds. Panels A and B, C

and D, and E and F consider accounts 1, 2, and 3, respectively. The number of draws is: (a)

60 in panels A, C, and E; and (b) 120 in panels B, D, and F. With the exception of the case

involving account 3 and 120 draws (see panel F), average CERs are negative if implied risk aversion

coeffi cients are suffi ciently small. As these coeffi cients increase, average CERs at first increase

sharply for all accounts, but then either remain at a roughly constant positive level for accounts 1

and 2 (see panels A—D) or decrease to a lower positive level for account 3 (see panels E and F).

In the last three rows of Table 2C, thresholds are endogenously set by maximizing the average

CERs of optimal portfolios within accounts. As before, we use risk aversion coeffi cients of 4, 3,

such coeffi cients reduces estimation risk.
29Note that there could be a reduction in average CER. For example, in the case of 120 draws, the average CER of the

optimal portfolio within account 2 is negative if the threshold probability and return are, respectively, 5% and −25% (see the
dashed line of Fig. 3B), whereas that of the optimal portfolio in the MV model is positive if the risk aversion coeffi cient is 3
(see the second row of Table 2C).
30For example, using a risk aversion coeffi cient of 4 and 60 draws, the increase is 1.14% − (−0.56%) = 1.70% where 1.14%

and −0.56% are from the first row of, respectively, Tables 2A and 2C.
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and 1 to compute the average CERs for accounts 1, 2, and 3, respectively. Observe that these

coeffi cients generally differ from the implied risk aversion coeffi cients of optimal portfolios within

accounts with endogenous variable thresholds. In setting such thresholds, we compute the average

CER for each element in an appropriate grid of implied risk aversion coeffi cients and then identify

the element that leads to the largest average CER as well as the associated thresholds. With these

thresholds, the implied risk aversion coeffi cients of the optimal portfolios within accounts 1, 2, and

3 exceed, respectively, 4, 3, and 1. By design, the resulting average CERs exceed those of optimal

portfolios in the MV model with risk aversion coeffi cients of 4, 3, and 1 (in Table 2C, compare the

last and first three rows). More generally, for variable thresholds associated with a wide range of

implied risk aversion coeffi cients, the average CERs of optimal portfolios within accounts (see panels

A—F of Fig. 5) exceed those of optimal portfolios in the MV model with risk aversion coeffi cients

of 4, 3, and 1. In panels A—E, if the implied risk aversion coeffi cient is larger than the risk aversion

coeffi cient, then the average CER of the optimal portfolio within a given account exceeds that of

the optimal portfolio in the MV model. In panel F, if the implied risk aversion coeffi cient is strictly

between 1 and 6, then the average CER of the optimal portfolio within account 3 exceeds that of

the optimal portfolio in the MV model with a risk aversion coeffi cient of 1. Panels A—F also show

that the increase in average CER arising from using the DMSS model with variable thresholds

associated with a given implied risk aversion coeffi cient instead of the MV model with a plausible

risk aversion coeffi cient depends on the size of these two coeffi cients as well as the number of draws.

In assessing the statistical significance of the difference between the distributions of CERs for

optimal portfolios within accounts and optimal portfolios in the MV model with plausible risk

aversion coeffi cients, we utilize: (i) the two-sample Kolmogorov-Smirnov test and (ii) the Wilcoxon

rank sum test. For example, consider the case of 60 draws, fixed exogenous thresholds, and account

1. Using (i), we test the null hypothesis that the cdf of CERs for the optimal portfolio within

account 1 with a threshold probability of 1% and a threshold return of −5% coincides with the cdf
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of CERs for the optimal portfolio in the MV model with a risk aversion coeffi cient of 4. While the

former CERs are used in the first row of Table 2A, the latter are used in the first row of Table 2C (see

the first set of either two or three columns to the right of the ‘Account’column). The alternative

hypothesis is that the two cdfs differ. Similarly, using (ii), we test the null hypothesis that the

median of the distribution of CERs for the optimal portfolio within account 1 with a threshold

probability of 1% and a threshold return of −5% coincides with the median of CERs for the

optimal portfolio in the MV model with a risk aversion coeffi cient of 4. The alternative hypothesis

is that the two medians differ. We also conduct tests for the cases of either: (a) 120 draws; (b)

fixed exogenous threshold probabilities and endogenous threshold returns, fixed exogenous threshold

returns and endogenous threshold probabilities, or variable endogenous thresholds; and (c) accounts

2 or 3. Since we use two test statistics, two numbers of draws, four types of thresholds, and three

accounts, we conduct 48 [= 2 × 2 × 4 × 3] tests. For all of these tests, we find that the null

hypothesis is rejected at the 1% level. Hence, there is statistical significance to the result that the

use of the DMSS model reduces estimation risk relative to the use of the MV model with plausible

risk aversion coeffi cients.31

4.3. Aggregate portfolio

Next, we assess the out-of-sample performance of aggregate portfolios with the fixed thresholds

from Table 2A. Table 3A presents their average CERs using a risk aversion coeffi cient of 2.32 Note

that the average CERs in the second row (with exogenous threshold probabilities and endogenous

threshold returns) exceed those in the third row (with endogenous threshold probabilities and ex-

31Additionally, we find that the weights of optimal portfolios within accounts (with the thresholds used in Table 2A as well
as the last three rows of Table 2C) are more stable than those of optimal portfolios in the MV model (with the risk aversion
coeffi cients used in the first three rows of Table 2C). In assessing the stability of the weights of the portfolio within any given

account m ∈ {1, 2, 3} with simulated data, we compute
∑1000
s=1

∣∣∣wεm,s+1−wεm,s∣∣∣/√8
999

where |·| denotes the Euclidean norm (we
proceed similarly when either assessing optimal portfolios in the MV model or using empirical data). This finding suggests that
the transaction costs arising from implementing the DMSS model are smaller than those arising from implementing the MV
model. A detailed comparison of the transaction costs arising from implementing these two models is left for future research.
32While we obtain similar results using other reasonable values for this coeffi cient, a value of 2 can be justified as follows. In the

absence of estimation risk, the risk aversion coeffi cient implied by the aggregate portfolio is γa = 1/(
∑M
m=1 ym/γm). Recalling

that (1) there are M = 3 accounts, (2) the fractions of wealth in the accounts are given by (y1, y2, y3) = (0.4, 0.3, 0.3), and (3)
average CERs of optimal portfolios within accounts are determined by using risk aversion coeffi cients of (γ1, γ2, γ3) = (4, 3, 1),
we have 1/(

∑M
m=1 ym/γm) = 1/ (0.4/4 + 0.3/3 + 0.3/1) = 2.
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ogenous threshold returns), which in turn exceed those in the first row (with exogenous thresholds).

As with optimal portfolios within accounts, average CERs increase in the number of draws.

Fig. 6 provides box plots of the risk aversion coeffi cients implied by aggregate portfolios for

the fixed thresholds in Table 3A. Note that the median coeffi cients with exogenous thresholds (in

columns (1)—(2)) exceed those with exogenous threshold probabilities and endogenous threshold

returns (in columns (3)—(4)) as well as those with endogenous threshold probabilities and exogenous

threshold returns (in columns (5)—(6)). In each column, the median coeffi cient exceeds the risk

aversion coeffi cient of 2 that is used to compute the average CERs of aggregate portfolios.

Table 3C assesses the out-of-sample performance of aggregate portfolios with the variable thresh-

olds from Table 2C. Note that the average CERs in the first row (with exogenous implied risk

aversion coeffi cients) are smaller than those in the second row (with endogenous coeffi cients). As

with fixed thresholds, average CERs increase in the number of draws.

5. Empirical data

We now use empirical data. As we explain shortly, the use of empirical data allows us to consider

the case where the first two moments of the distribution of asset returns possibly vary over time.

5.1. Methodology

Our methodology takes seven steps. Steps 1 and 2 are identical to those when using simulated

data (see Section 4.1). In step 3, we use the 60 vectors of monthly asset returns for the time

period 1978—1982 (one vector for each month) to determine the estimated optimization inputs. In

step 4, we use these inputs to find the composition of optimal portfolios within accounts and the

aggregate portfolio, which are assumed to be held in 1983.33 In step 5, we repeat steps 3 and 4 (31

times) by using monthly asset returns in the time periods 1979—1983, ..., 2009—2013 to determine

33For brevity, we omit the figures based on empirical data that examine: (1) the existence of optimal portfolios within
accounts with fixed thresholds; (2) average CERs of optimal portfolios within accounts with either fixed or variable thresholds;
(3) implied risk aversion coeffi cients of optimal portfolios within accounts with fixed thresholds; and (4) implied risk aversion
coeffi cients of aggregate portfolios. The results in these figures are similar to those reported for the corresponding Figs. 2—6
based on simulated data.
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the estimated optimization inputs. In step 6, for each account we compute the average CER of

the 32 optimal portfolios within the account (one portfolio for each time period). Let w ε
m,t denote

the optimal portfolio within account m held in year t for m = 1, 2, 3 and t = 1983, ..., 2014. For

any account m ∈ {1, 2, 3} and any risk aversion coeffi cient γ > 0, the average CER of portfolios

{w ε
m,t}2014t=1983 is CER

ε
m,γ ≡

∑2014

t=1983
E[rwεm,t ]−

γ

2
(σ[rwεm,t ])

2

32 . Here, E[rwεm,t ] and σ[rwεm,t ] are obtained

by using the monthly returns of portfolio w ε
m,t in year t. Hence, the first two moments of the

distribution of asset returns possibly vary over time. Similarly, we compute the average CER of

the 32 aggregate portfolios (again, one portfolio for each time period). In step 7, we repeat steps

3—6 by using 120 (instead of 60) months to determine the estimated optimization inputs.

5.2. Optimal portfolios within accounts

Tables 4A and 4C report the average CERs of optimal portfolios within accounts with, re-

spectively, fixed and variable thresholds. Compared to Tables 2A and 2C where simulated data

are used, the respective average CERs are smaller. However, the extent to which average CERs

associated with the use of the DMSS model (see Table 4A) exceed those associated with the use

of the MV model with plausible risk aversion coeffi cients (see the first three rows of Table 4C) is

larger.34

The quantitative differences between the results with empirical and simulated data can be

understood as follows. First, the values of the estimated optimization inputs when using empirical

data differ from those when using simulated data. Second, while the first two moments of the

distribution of asset returns are assumed to vary over time when computing average CERs with

empirical data, they are assumed to be constant with simulated data.

34When empirical data are used, we do not conduct the two-sample Kolmogorov-Smirnov and Wilcoxon rank sum tests to
assess the statistical significance of the difference between the distributions of CERs for optimal portfolios within accounts and
optimal portfolios in the MV model. The reason why we do not conduct these tests is that the assumption of random sample
selection (see, e.g., Sheskin (2011)) does not exactly hold. For example, consider the case of 60 months being used to determine
the estimated optimization inputs and account 1. The optimal portfolios for this account that are held in 1983 and 1984 are
obtained by using estimated optimization inputs based on asset returns for the time periods of, respectively, 1978—1982 and
1979—1983 (see Section 5.1). Since the time periods overlap in four (out of five) years, the portfolio held in 1983 is related to
that held in 1984. Hence, the CER of the former portfolio is also related to the CER of the latter.
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5.3. Aggregate portfolio

Table 5A and 5C report the average CERs of aggregate portfolios with, respectively, fixed and

variable thresholds. Compared to Table 3A and 3C where simulated data are used, the respective

average CERs are smaller. Focusing on variable thresholds, note that the difference between the

average CERs in the two rows of Table 5C is larger than that in the two rows of Table 3C.

6. Disallowing short selling

We now extend Sections 4 and 5 to the case where short selling is disallowed.

6.1. Simulated data

Next, we use our simulated data.

6.1.1. Optimal portfolios within accounts

Consider fixed thresholds. Compared to panels A and B of Fig. 2 where short selling is allowed,

panels C and D indicate that there is a larger set of thresholds for which optimal portfolios within

accounts exist in all simulations. When allowed, they exist if and only if (1) threshold probabilities

are suffi ciently low and (2) threshold returns are suffi ciently small. However, when disallowed, they

exist if and only if (2) holds.

Table 2B assesses the out-of-sample performance of optimal portfolios within accounts. Com-

pared to Table 2A where short selling is allowed, there are two main differences. First, average

CERs are smaller. Second, there are smaller increases (if any) in average CERs arising from using

either endogenous threshold probabilities and exogenous threshold returns (in the middle three

rows of Table 2B) or endogenous threshold probabilities and exogenous threshold returns (in the

last three rows) instead of exogenous thresholds (in the first three rows). These differences can be

seen by examining Fig. 3. Specifically, average CERs with short selling disallowed (in panels E—H)

are smaller than those with short selling allowed and endogenous thresholds (in panels A—D, see

the average CERs at the points where the lines peak). Also, unlike in the latter panels, the relation
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between average CERs and thresholds is almost flat in the former.

Panels D—F of Fig. 4 provide box plots of risk aversion coeffi cients implied by optimal portfolios

within accounts.35 In nearly all cases, median coeffi cients are smaller than those in panels A—C

where short selling is allowed (the median coeffi cients in columns (4) and (6) of panel F are slightly

larger than those in, respectively, columns (4) and (6) of panel C).36

Consider now variable thresholds. Table 2D assesses the out-of-sample performance of optimal

portfolios within accounts. Compared to the case where short selling is allowed, three differences are

worth noting. First, average CERs are smaller with few exceptions. Specifically, when the number

of draws is 60, the average CERs in the first three rows of Table 2D exceed those in the first

three rows of Table 2C. Second, increases in average CERs (if any) arising from using endogenous

thresholds are also smaller (compare the difference between the last and first three rows of Table

2D with the difference in Table 2C).37 Third, while there is still an increase in average CER arising

from using the DMSS model with fixed thresholds instead of the MV model with a plausible risk

aversion coeffi cient in all but one case, it is considerably smaller than that when short selling is

allowed. This case involves using 120 draws, account 1, and exogenous thresholds. In such a case,

the average CER when using the DMSS model with thresholds of α1 = 1% and H1 = −5% equals

that when using the MV model with a risk aversion coeffi cient of 4 (compare the first line of Tables

2B and 2D). In other cases, the fact that there are smaller increases in average CERs (relative to

when short selling is allowed) can be seen by noting that the differences between the average CERs

in Table 2B and those in the first three rows of Table 2D are smaller than the differences between

the average CERs in Table 2A and those in the first three rows of Table 2C.

35When short selling is disallowed, the optimal portfolio within a given account has maximum estimated expected return
among all feasible portfolios in the cases where either the threshold probability is suffi ciently high or the threshold return is
suffi ciently small. In such cases, a hypothetical MV investor would select this portfolio if he or she has a risk aversion coeffi cient
between zero and some positive value. In reporting its implied risk aversion coeffi cient, we follow the convention of using the
largest risk aversion coeffi cient for which the investor would select it.
36Note that the minimum coeffi cient is essentially zero. Such a coeffi cient can be obtained if the optimal portfolio within the

corresponding account is the portfolio with maximum estimated expected return.
37The fact that increases in average CERs are smaller can be seen by inspecting Fig. 5. In panels A—F, average CERs are

very sensitive to implied risk aversion coeffi cients if such coeffi cients are relatively small. In panels G—L, average CERs are not
very sensitive to implied risk aversion coeffi cients regardless of the size of such coeffi cients. Unlike when short selling is allowed,
variable thresholds can be set so that the risk aversion coeffi cient implied by the optimal portfolio within a given account is
zero. Hence, the x-axis of panels G—L of Fig. 5 ranges from zero to 20 (instead of ranging from one to 20 as in panels A—F).
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The result that there are smaller increases in average CERs arising from using the DMSS model

with fixed thresholds instead of the MV model with plausible risk aversion coeffi cients relative to the

case when short selling is allowed can be understood as follows. As noted earlier, disallowing short

selling reduces estimation risk in the MV model; see, e.g., Jagganathan and Ma (2002). Hence,

when short selling is disallowed, the average CERs associated with the use of the MV model with

plausible risk aversion coeffi cients are closer to those associated with the use of the DMSS model

with fixed thresholds relative to the case when it is allowed.

As before, we utilize the two-sample Kolmogorov-Smirnov and Wilcoxon rank sum tests to

assess the statistical significance of the difference between the distributions of CERs for optimal

portfolios within accounts and optimal portfolios in the MV model with plausible risk aversion

coeffi cients. In 36 of the 48 tests, we find that the null hypothesis is rejected at the 1% level. Hence,

there is statistical significance to the result that the use of the DMSS model reduces estimation

risk relative to the use of the MV model with plausible risk aversion coeffi cients. However, the

statistical significance is weaker than in the preceding case where short selling is allowed (in which

the null hypothesis is rejected at the 1% level in all 48 tests).

6.1.2. Aggregate portfolio

Table 3B reports the average CERs of aggregate portfolios with fixed thresholds.38 The results

differ from those in Table 3A where short selling is allowed in two respects. First, average CERs are

smaller. Second, in the case of 120 draws, there are smaller increases in average CERs arising from

using either endogenous threshold probabilities and exogenous threshold returns (in the second row

of Table 3B) or endogenous threshold probabilities and exogenous threshold returns (in the third

row) instead of exogenous thresholds (in the first row).

Table 3D reports the average CERs of aggregate portfolios with variable thresholds. As with

38Note that the aggregate portfolio might lie away from the estimated MV frontier when short selling is disallowed (DMSS
make a similar point when estimation risk is absent). By construction, an MV investor would never select a portfolio that
lies away from the estimated MV frontier. Hence, the implied risk aversion coeffi cient of the aggregate portfolio cannot be
determined if it lies away from the frontier. Accordingly, we do not report its implied risk aversion coeffi cient when short selling
is disallowed.
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fixed thresholds, the results differ from those in Table 3C where short selling is allowed in two

respects. First, average CERs are smaller when using endogenous implied risk aversion coeffi cients;

compare the second row of Tables 3D and 3C. Second, there are smaller increases in average CERs

(if any) arising from using endogenous implied risk aversion coeffi cients; note that the differences

in average CERs (if any) in the two lines of Table 3D are smaller than the differences in average

CERs in the two lines of Table 3C.

6.2. Empirical data

We now use empirical data.

6.2.1. Optimal portfolios within accounts

Tables 4B and 4D show the average CERs of optimal portfolios within accounts with, respec-

tively, fixed and variable thresholds. Compared to the corresponding Tables 2B and 2D where

simulated data are used, it can be seen that average CERs are smaller.

6.2.2. Aggregate portfolio

Tables 5B and 5D present the average CERs of aggregate portfolios with, respectively, fixed

and variable thresholds. Compared to the corresponding Tables 3B and 3D where simulated data

are used, note that average CERs are smaller.

7. Practical implications

This section summarizes two practical implications of our results for asset managers.39 First,

thresholds need to be carefully set so that optimal portfolios within accounts (and thus the aggregate

portfolio) exist. When short selling is allowed, they exist if and only if (1) threshold probabilities

are suffi ciently low and (2) threshold returns are suffi ciently small. When short selling is disallowed,

they exist if and only if (2) holds.

39Here, we use the terms ‘asset managers’ in a broad sense. Hence, examples of asset managers here include: (1) portfolio
managers in mutual and hedge funds; (2) firms or individuals who manage portfolios on behalf of institutional investors such
as endowments and pension plans; (3) financial advisers who manage portfolios on behalf of retail investors; and (4) investors
who manage their own portfolios.
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Second, if short selling is allowed, then there is a wide range of thresholds for which the use

of the DMSS model notably reduces estimation risk relative to the use of the MV model with a

plausible risk aversion coeffi cient. While typically there is still a reduction in estimation risk if

short selling is disallowed, this reduction is considerably smaller.

8. Conclusion

Das, Markowitz, Scheid, and Statman (2010, DMSS) develop a behavioral-based portfolio se-

lection model in which the investor divides his or her wealth among accounts with motives such

as retirement and bequest. For each account, short selling is allowed and the optimal portfolio

has maximum expected return subject to: (1) fully investing the wealth in the account; and (2)

the probability of the account’s return being less than or equal to some threshold return not ex-

ceeding some threshold probability. Reflecting different account motives, thresholds possibly vary

across accounts. Nevertheless, optimal portfolios within accounts and the corresponding aggregate

portfolio are on the MV frontier.

Our paper complements DMSS by recognizing estimation risk. We begin by theoretically char-

acterizing the existence and composition of optimal portfolios within accounts and the aggregate

portfolio. Their existence is found to depend on the thresholds and estimated optimization inputs.

When such portfolios exist, they are on the estimated MV frontier.

Using simulated and empirical data, we then assess the out-of-sample performance of optimal

portfolios within accounts. We find that there is a wide range of thresholds for which optimal

portfolios within accounts notably outperform optimal portfolios in the MV model with plausible

risk aversion coeffi cients. However, when short selling is disallowed, the former portfolios typically

still outperform the latter but to a considerably lesser extent. Hence, the use of the DMSS model

reduces estimation risk relative to the use of the MV model with plausible risk aversion coeffi cients.

Since DMSS argue in favor of using their model, in the face of estimation risk an assessment of

its out-of-sample performance is of practical interest. While our analysis suggests that the DMSS
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model is a valid approach to cope with such risk, we do not claim that it is the best approach.

For example, the literature suggests the use of either the estimated minimum-variance portfolio or

the equally-weighted portfolio. Using simulated and empirical data, we report that these portfolios

are outperformed by optimal portfolios within accounts with some exceptions. However, a detailed

analysis of the relative performance of such portfolios is left for future research.

In assessing the relative performance of the DMSS and MV models, we use classical estimators

for the optimization inputs. An assessment of their relative performance with other estimators

(e.g., Bayesian or robust) is also left for further research.
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Table 2: Average CERs of optimal portfolios within accounts using simulated data

This table shows average CERs of optimal portfolios within accounts using simulated data. The number
of draws used to find the estimated optimization inputs is either 60 or 120. While panels A and B use
fixed threshold probabilities and returns, panels C and D use variable thresholds. Short selling is allowed
(disallowed) in panels A and C (B and D). In the first three rows of panels A and B, threshold probabilities
and returns are exogenous. In the next three rows, threshold probabilities are exogenous, whereas threshold
returns are endogenously set by maximizing average CERs. Similarly, in the last three rows, threshold returns
are exogenous, whereas threshold probabilities are endogenously set by maximizing average CERs. In the first
three rows of panels C and D, threshold probabilities and returns are set so that the risk aversion coefficients
implied by the optimal portfolios within accounts 1, 2, and 3 are exogenously given by, respectively, 4, 3, and
1. In the last three rows, they are endogenously set by maximizing average CERs. In determining the CERs
for accounts 1, 2, and 3, all panels use risk aversion coefficients of, respectively, 4, 3, and 1 (except for the first
three rows of panels C and D, these coefficients generally differ from the implied risk aversion coefficients).

Threshold Avg. Threshold Avg.
probability (%) return (%) CER (%) probability (%) return (%) CER (%)

Account Number of draws = 60 Number of draws = 120

Panel A: Fixed thresholds, short selling allowed

1 1.00 −5.00 1.14 1.00 −5.00 1.22
2 5.00 −8.00 1.46 5.00 −8.00 1.83
3 10.00 −10.00 2.95 10.00 −10.00 3.37

1 1.00 −8.62 1.27 1.00 −11.68 1.55
2 5.00 −6.79 1.48 5.00 −9.70 1.86
3 10.00 −13.40 3.10 10.00 −20.57 4.27

1 4.93 −5.00 1.26 9.36 −5.00 1.54
2 3.34 −8.00 1.49 7.26 −8.00 1.86
3 11.65 −10.00 3.01 18.06 −10.00 4.13

Panel B: Fixed thresholds, short selling disallowed

1 1.00 −5.00 0.80 1.00 −5.00 0.83
2 5.00 −8.00 0.89 5.00 −8.00 0.97
3 10.00 −10.00 1.13 10.00 −10.00 1.23
1 1.00 −6.82 0.82 1.00 −7.29 0.86
2 5.00 −6.27 0.90 5.00 −7.61 0.97
3 10.00 −5.83 1.13 10.00 −6.25 1.23

1 3.39 −5.00 0.82 4.44 −5.00 0.86
2 2.22 −8.00 0.90 4.26 −8.00 0.97
3 2.12 −10.00 1.14 2.58 −10.00 1.23

Implied risk Avg. Implied risk Avg.
aversion coefficient CER (%) aversion coefficient CER (%)

Account Number of draws = 60 Number of draws = 120

Panel C: Variable thresholds, short selling allowed

1 4.00 −0.56 4.00 1.03
2 3.00 −0.95 3.00 1.17
3 1.00 −4.13 1.00 2.23

1 10.95 1.24 6.98 1.52
2 8.21 1.45 5.24 1.82
3 2.74 3.07 1.75 4.16

Panel D: Variable thresholds, short selling disallowed

1 4.00 0.79 4.00 0.83
2 3.00 0.88 3.00 0.93
3 1.00 1.12 1.00 1.21

1 4.95 0.79 1.29 0.84
2 1.95 0.89 0.33 0.97
3 0.10 1.13 0.06 1.23
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Table 3: Average CERs of aggregate portfolios using simulated data

This table reports average CERs of aggregate portfolios using simulated data. The number of draws used to
find the estimated optimization inputs is either 60 or 120. The fractions of wealth in accounts 1, 2, and 3 are,
respectively, 40%, 30%, and 30%. While short selling is allowed in panels A and C, it is disallowed in panels
B and D. Panels A, B, C, and D use the same threshold probabilities and returns as, respectively, panels A,
B, C, and D of Table 2.

Threshold Threshold
probability (%) return (%) Avg. probability (%) return (%) Avg.

Account CER Account CER
1 2 3 1 2 3 (%) 1 2 3 1 2 3 (%)

Number of draws = 60 Number of draws = 120

Panel A: Fixed thresholds, short selling allowed

1.00 5.00 10.00 −5.00 −8.00 −10.00 1.85 1.00 5.00 10.00 −5.00 −8.00 −10.00 2.10
1.00 5.00 10.00 −8.62 −6.79 −13.40 1.90 1.00 5.00 10.00 −11.68 −9.70 −20.57 2.47
4.93 3.34 11.65 −5.00 −8.00 −10.00 1.87 9.36 7.26 18.06 −5.00 −8.00 −10.00 2.43

Panel B: Fixed thresholds, short selling disallowed

1.00 5.00 10.00 −5.00 −8.00 −10.00 0.97 1.00 5.00 10.00 −5.00 −8.00 −10.00 1.04
1.00 5.00 10.00 −6.82 −6.27 −5.83 0.99 1.00 5.00 10.00 −7.29 −7.61 −6.25 1.07
3.39 2.22 2.12 −5.00 −8.00 −10.00 0.99 4.44 4.26 2.58 −5.00 −8.00 −10.00 1.07

Implied risk aversion coefficient Avg. Implied risk aversion coefficient Avg.
Account CER Account CER

1 2 3 (%) 1 2 3 (%)

Number of draws = 60 Number of draws = 120

Panel C: Variable thresholds, short selling allowed

4.00 3.00 1.00 −1.74 4.00 3.00 1.00 1.44
10.95 8.21 2.74 1.86 6.98 5.24 1.75 2.41

Panel D: Variable thresholds, short selling disallowed

4.00 3.00 1.00 0.98 4.00 3.00 1.00 1.04
4.95 1.95 0.10 0.98 1.29 0.33 0.06 1.09
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Table 4: Average CERs of optimal portfolios within accounts using empirical data

This table shows average CERs of optimal portfolios within accounts using empirical data. The number of
months in the periods used to find the estimated optimization inputs is either 60 or 120. While panels A and B
use fixed threshold probabilities and returns, panels C and D use variable thresholds. Short selling is allowed
(disallowed) in panels A and C (B and D). In the first three rows of panels A and B, threshold probabilities
and returns are exogenous. In the next three rows, threshold probabilities are exogenous, whereas threshold
returns are endogenously set by maximizing average CERs. Similarly, in the last three rows, threshold returns
are exogenous, whereas threshold probabilities are endogenously set by maximizing average CERs. In the first
three rows of panels C and D, threshold probabilities and returns are set so that the risk aversion coefficients
implied by the optimal portfolios within accounts 1, 2, and 3 are exogenously given by, respectively, 4, 3, and
1. In the last three rows, they are endogenously set by maximizing average CERs. In determining the CERs
for accounts 1, 2, and 3, all panels use risk aversion coefficients of, respectively, 4, 3, and 1 (except for the first
three rows of panels C and D, these coefficients generally differ from the implied risk aversion coefficients).

Threshold Avg. Threshold Avg.
probability (%) return (%) CER (%) probability (%) return (%) CER (%)

Account Number of months = 60 Number of months = 120

Panel A: Fixed thresholds, short selling allowed

1 1.00 −5.00 1.00 1.00 −5.00 1.10
2 5.00 −8.00 0.47 5.00 −8.00 1.46
3 10.00 −10.00 1.50 10.00 −10.00 3.08

1 1.00 −5.03 1.00 1.00 −8.60 1.23
2 5.00 −3.52 1.13 5.00 −7.00 1.48
3 10.00 −5.99 1.99 10.00 −14.74 3.34

1 1.08 −5.00 1.06 5.73 −5.00 1.35
2 0.42 −8.00 1.20 3.82 −8.00 1.61
3 5.61 −10.00 2.19 15.12 −10.00 3.70

Panel B: Fixed thresholds, short selling disallowed

1 1.00 −5.00 0.54 1.00 −5.00 0.68
2 5.00 −8.00 0.67 5.00 −8.00 0.79
3 10.00 −10.00 0.92 10.00 −10.00 1.06
1 1.00 −1.88 0.64 1.00 −8.88 0.68
2 5.00 −12.86 0.69 5.00 −8.01 0.79
3 10.00 −10.64 0.92 10.00 −8.51 1.06

1 23.80 −5.00 0.58 9.11 −5.00 0.68
2 15.78 −8.00 0.69 4.76 −8.00 0.79
3 9.85 −10.00 0.92 3.81 −10.00 1.06

Implied risk Avg. Implied risk Avg.
aversion coefficient CER (%) aversion coefficient CER (%)

Account Number of months = 60 Number of months = 120

Panel C: Variable thresholds, short selling allowed

1 4.00 −5.85 4.00 −0.21
2 3.00 −8.08 3.00 −0.46
3 1.00 −25.94 1.00 −2.57

1 21.51 1.00 9.74 1.26
2 16.36 1.12 7.33 1.50
3 5.61 1.99 2.46 3.36

Panel D: Variable thresholds, short selling disallowed

1 4.00 0.43 4.00 0.63
2 3.00 0.51 3.00 0.74
3 1.00 0.73 1.00 1.04

1 68.69 0.62 3.20 0.67
2 0.00 0.70 0.00 0.80
3 0.00 0.93 0.03 1.06
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Table 5: Average CERs of aggregate portfolios using empirical data

This table reports average CERs of aggregate portfolios using empirical data. The number of months in the
periods used to find the estimated optimization inputs is either 60 or 120. The fractions of wealth in accounts
1, 2, and 3 are, respectively, 40%, 30%, and 30%. While short selling is allowed in panels A and C, it is
disallowed in panels B and D. Panels A, B, C, and D use the same threshold probabilities and returns as,
respectively, panels A, B, C, and D of Table 4.

Threshold Threshold
probability (%) return (%) Avg. probability (%) return (%) Avg.

Account CER Account CER
1 2 3 1 2 3 (%) 1 2 3 1 2 3 (%)

Number of months = 60 Number of months = 120
Panel A: Fixed thresholds, short selling allowed

1.00 5.00 10.00 −5.00 −8.00 −10.00 1.11 1.00 5.00 10.00 −5.00 −8.00 −10.00 1.86
1.00 5.00 10.00 −5.03 −3.52 −5.99 1.35 1.00 5.00 10.00 −8.60 −7.00 −14.74 1.95
1.08 0.42 5.61 −5.00 −8.00 −10.00 1.45 5.73 3.82 15.12 −5.00 −8.00 −10.00 2.14

Panel B: Fixed thresholds, short selling disallowed

1.00 5.00 10.00 −5.00 −8.00 −10.00 0.74 1.00 5.00 10.00 −5.00 −8.00 −10.00 0.87
1.00 5.00 10.00 −1.88 −12.86 −10.64 0.79 1.00 5.00 10.00 −8.88 −8.01 −8.51 0.91

23.80 15.78 9.85 −5.00 −8.00 −10.00 0.81 9.11 4.76 3.81 −5.00 −8.00 −10.00 0.92

Implied risk aversion coefficient Avg. Implied risk aversion coefficient Avg.
Account CER Account CER

1 2 3 (%) 1 2 3 (%)

Number of months = 60 Number of months = 120

Panel C: Variable thresholds, short selling allowed

4.00 3.00 1.00 −12.54 4.00 3.00 1.00 −0.99
21.51 16.34 5.61 1.34 9.74 7.33 2.46 1.97

Panel D: Variable thresholds, short selling disallowed

4.00 3.00 1.00 0.61 4.00 3.00 1.00 0.84
68.69 0.00 0.00 0.79 3.20 0.00 0.03 0.90
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Fig. 1: Existence of the optimal portfolio within a given account

The curve shows the portfolios on the estimated MV frontier when short selling is allowed. Fix any
account m ∈ {1, ...,M} with threshold probability and return given by, respectively, αm and Hm.
The line has intercept Hm and slope zαm . Portfolios on or above this line satisfy constraint (6),
whereas portfolios below it do not. Note that the constraint is tightened if either αm decreases or
Hm increases. Recall that αε is defined in Eq. (9). Also, Hε

αm is given by Eq. (10) with α = αm.
When αm ≥ αε, the optimal portfolio within account m does not exist regardless of the threshold
return (see panels A and B). When αm < αε, the optimal portfolio within account m does not exist
if Hm > Hε

αm (see panel C), but it exists if either Hm = Hε
αm (see panel D) or Hm < Hε

αm (see
panel E). In panels D and E, the optimal portfolio within account m is represented by point pm.
In panel D, this portfolio is located where the line is tangent to the curve. In panel E, the portfolio
is located where the line crosses the top half of the curve.
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Fig. 2: Existence of optimal portfolios within accounts using fixed threshold probabilities and

returns as well as simulated data

This figure examines the existence of optimal portfolios within accounts using fixed threshold probabilities
and returns as well as simulated data. The number of draws used to find the estimated optimization inputs,
Ndraws, is either 60 or 120. Each panel reports the fraction of simulations for which the optimal portfolios
within any given account m exist for various values of threshold probability αm and threshold return Hm.
While short selling is allowed in panels A and B, it is disallowed in panels C and D.
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Fig. 6: Box plots of risk aversion coefficients implied by aggregate portfolios using fixed
threshold probabilities and returns as well as simulated data

This figure presents box plots of the risk aversion coefficients implied by aggregate portfolios using fixed
threshold probabilities and returns as well as simulated data. The number of draws used to find the estimated
optimization inputs, Ndraws, is either 60 or 120. Short selling is allowed. The fractions of wealth in accounts
1, 2, and 3 are, respectively, 40%, 30%, and 30%. Threshold probabilities (αm, m = 1, 2, 3) and returns (Hm,
m = 1, 2, 3) are the same as in panel A of Table 3.
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Online appendix: proofs

The following three lemmas are useful in the proofs of our theoretical results.

Lemma 1. If α < αε, then the portfolio with minimum estimated VaR at confidence level 1− α,

denoted by wα, has an estimated VaR at this confidence level of V ε
1−α ≡ −Hε

α.

Proof. Suppose that α < αε. Using Eq. (4), portfolio wα is on the estimated MV frontier. It

follows from Eqs. (4) and (8) that Eε[rwα ] solves:

min
E∈R

zα

√
1/Cε +

(E −Aε/Cε)2
Dε/Cε

− E. (33)

A first-order condition for Eε[rwα ] to solve problem (33) is:

zα (Eε[rwα ]−Aε/Cε) / (Dε/Cε)√
1/Cε + (Eε[rwα ]−Aε/Cε)2 / (Dε/Cε)

− 1 = 0. (34)

It follows from Eq. (34) that:

Eε[rwα ] =

√
(Dε)2/ (Cε)3

z2α −Dε/Cε
+Aε/Cε. (35)

Using Eqs. (8) and (35), we have:

σε[rwα ] =

√
z2α/C

ε

z2α −Dε/Cε
. (36)

Eqs. (4), (10), (35), and (36) imply that V ε[1− α, rwα ] =

√
z2α−Dε/Cε

Cε −Aε/C = −Hε
α.

Lemma 2. Fix any account m ∈ {1, ...,M}. If αm < αε and Hm ≤ Hε
αm , then the optimal portfolio

within account m, w ε
m, is on the estimated MV frontier. Furthermore, we have E

ε[rwεm ] > Aε/Cε

and V ε[1− αm, rwεm ] = −Hm.

Proof. Fix any account m ∈ {1, ...,M}. Suppose that αm < αε and Hm ≤ Hε
αm . First, we show

that portfolio w ε
m is on the estimated MV frontier. Assume by way of a contradiction that it is

not. Then, there exists a portfolio w with Eε[rw ] = Eε[rwεm ] and σε[rw ] < σε[rwεm ]. Let w∗ ≡

ζw ε
E1

+ (1− ζ)w where ζ > 0 is arbitrarily small and E1 > Eε[rw ]. Note that Eε[rw∗ ] > Eε[rwεm ]

and σε[rw∗ ] < σε[rwεm ]. Hence, it follows from Eq. (4), that V ε[1 − αm, rw∗ ] < V ε[1 − αm, rwεm ].
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Inequalities Eε[rw∗ ] > Eε[rwεm ] and V ε[1−αm, rw∗ ] < V ε[1−αm, rwεm ] contradict the fact that w ε
m

is the optimal portfolio within account m. This completes the first part of our proof.

Second, we show that Eε[rwεm ] > Aε/Cε. Letting E ≡ Eε[rwεm ], Eqs. (4) and (8) imply that:

V ε[1− αm, rwεE ] = zαm

√
1/Cε +

(
Eε[rwεE ]−Aε/Cε

)2
/ (Dε/Cε)− Eε[rwεE ]. (37)

It follows from Eq. (37) that:

∂V ε[1− αm, rwεE ]

∂Eε[rwεE ]
=

zαm
(
Eε[rwεE ]−Aε/Cε

)
/ (Dε/Cε)√

1/Cε +
(
Eε[rwεE ]−Aε/Cε

)2
/ (Dε/Cε)

− 1. (38)

Since zαm > 0, Eq. (38) implies that if Eε[rwεm ] ≤ Aε/Cε, then ∂V ε[1 − αm, rwεE ]/∂Eε[rwεE ] < 0.

Hence, we have Eε[rwεm ] > Aε/Cε. This completes the second part of our proof.

Third, we show that V ε[1 − αm, rwεm ] = −Hm. Eq. (5) implies that V ε[1 − αm, rwεm ] ≤ −Hm.

Assume by way of a contradiction that V ε[1−αm, rwεm ] < −Hm. Let w∗∗ ≡ δw ε
E2

+(1−δ)w ε
m where

δ > 0 is arbitrarily small and E2 > Eε[rwεm ]. Note that Eε[rw∗∗ ] > Eε[rwεm ] and V ε[1−αm, rw∗∗ ] <

−Hm, which contradict the fact that w ε
m is the optimal portfolio within account m. This completes

the third part of our proof.

Lemma 3. Fix any γ > 0 and an objective function f : R× R+→ R defined by:

f(Eε[rw ], σε[rw ]) = Eε[rw ]− γ

2
(σε[rw ])2 . (39)

Letting Eγ,f denote the estimated expected return of the optimal portfolio associated with γ and f ,

we have Dε/Cε

Eγ,f−Aε/Cε = γ.

Proof of Lemma 3. Fix any γ > 0 and an objective function f : R× R+ → R defined by Eq.

(39). Note that the corresponding optimal portfolio is on the estimated MV frontier. Using Eqs.

(8) and (39), Eγ,f solves:

max
E∈R

E − γ

2

[
1/Cε +

(E −Aε/Cε)2
Dε/Cε

]
. (40)

A first-order condition for Eγ,f to solve (40) is 1− γEγ,f−A
ε/Cε

Dε/Cε = 0. Hence, Dε/Cε

Eγ,f−Aε/Cε = γ.

Proof of Theorem 1. Fix any account m ∈ {1, ...,M}. First, we show (i). Suppose that αm ≥ αε.

Using the definition of zαm and (9), we have:

0 < zαm ≤
√
Dε/Cε. (41)
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Fix any level of estimated expected return E ∈ R. Note that:(
Eε[rwεE ]−Aε/Cε

)
/ (Dε/Cε)√

1/Cε +
(
Eε[rwεE ]−Aε/Cε

)2
/ (Dε/Cε)

<
1√

Dε/Cε
. (42)

Using Eqs. (38), (41), and (42), we have
∂V ε[1−αm,rwε

E
]

∂Eε[rwε
E
] < 0. It follows that the optimal portfolio

within account m does not exist.

Suppose now that αm < αε and Hm > Hε
αm . Note that −Hm < −Hε

αm = V ε
1−αm . Hence, there

exists no portfolio w that meets constraint (5). Therefore, the optimal portfolio within account m

does not exist. This completes our proof of part (i).

Second, we show part (ii). Suppose that αm < αε and Hm ≤ Hε
αm . Lemma 2 and Eq. (8) imply

that:

Eε[rwεm ] = Aε/Cε +

√
(Dε/Cε)

[(
σε[rwεm ]

)2 − 1/Cε
]
. (43)

Using Eqs. (4) and (43) along with Lemma 2, we have:

zαmσ
ε[rwεm ]−Aε/Cε −

√
(Dε/Cε)

[(
σε[rwεm ]

)2 − 1/Cε
]

= −Hm. (44)

It follows from Eq. (44) that:

K1

(
σε[rwεm ]

)2
+K2σ

ε[rwεm ] +K3 = 0, (45)

where K1 ≡ z2αm − Dε/Cε, K2 ≡ −2zαm (Aε/Cε −Hm), and K3 ≡ (Aε/Cε −Hm)2 + Dε/ (Cε)2.

Using Eq. (45), we have:

σε[rwεm ] =

zαm (Aε/Cε −Hm)±
√

(Dε/Cε)
[
(Aε/Cε −Hm)2 −

(
z2αm −Dε/Cε

)
/Cε

]
z2αm −Dε/Cε

. (46)

It follows from Eq. (10) that Hε
αm < Aε/Cε. Noting that Hm ≤ Hε

αm < Aε/Cε, we have Aε/Cε −

Hm > 0. Using the fact that αm < αε and Eq. (9), we obtain z2αm−Dε/Cε > 0. Since Aε/Cε−Hm >

0, z2αm −Dε/Cε > 0, and w ε
m solves maximization problem (1) subject to constraints (2) and (5),

Eqs. (43) and (46) imply that:

σε[rwεm ] =

zαm (Aε/Cε −Hm) +

√
(Dε/Cε)

[
(Aε/Cε −Hm)2 −

(
z2αm −Dε/Cε

)
/Cε

]
z2αm −Dε/Cε

. (47)

Eqs. (11)—(13) follow from Lemma 2 along with Eqs. (7), (43), and (47). This completes our proof

of part (ii).�
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Proof of Corollary 1. Fix any account m ∈ {1, ...,M} with αm < αε and Hm ≤ Hε
αm . Eq. (16)

follows from Theorem 1 and Lemma 3.

Proof of Theorem 2. Suppose that αm < αε and Hm ≤ Hε
αm for any account m ∈ {1, ...,M}.

Eqs. (18) and (19) follow from Theorem 1. Using Eqs. (7) and (18), the aggregate portfolio is on

the estimated MV frontier. Hence, Eq. (20) follows from Eqs. (8) and (19).

Proof of Corollary 2. Suppose that αm < αε and Hm ≤ Hε
αm for any m ∈ {1, ...,M}. Eq. (23)

follows from Theorem 2 and Lemma 3.

Proof of Theorem 3. Fix any account m ∈ {1, ...,M} and any constant γim > 0. Suppose that

α̃m and H̃m satisfy, respectively, Eqs. (25) and (26). Noting that γim > 0, Eqs. (9) and (24) imply

that αε,γ
i
m < αε. Since αε,γ

i
m < αε and α̃m ≤ αε,γ

i
m , we have α̃m < αε.

We claim that H̃m ≤ Hε
α̃m
. In order to prove this claim, it suffi ces to show that:

H̃m −Hε
α̃m = 0 if zα̃m =

√
[Dε + (γim)2]/Cε (48)

and:
∂(H̃m −Hε

α̃m
)

∂zα̃m

∣∣∣∣∣
zα̃m=z

≤ 0 for any z ≥
√

[Dε + (γim)2]/Cε. (49)

Assume that zα̃m =

√
[Dε + (γim)2]/Cε. It follows from Eq. (26) that H̃m = Aε

Cε −
γim
Cε . Using Eq.

(10) with α = α̃m, we have Hε
α̃m

= Aε

Cε −
γim
Cε . Hence, Eq. (48) holds. Eqs. (10) and (26) imply that:

∂(H̃m −Hε
α̃m

)

∂zα̃m

∣∣∣∣∣
zα̃m=z

= −

√√√√ 1

Cε

[
1 +

Dε

(γim)2

]
+

√
1

Cε

(
z2

z2 −Dε/Cε

)
. (50)

Using Eq. (50), we have:

∂(H̃m −Hε
α̃m

)

∂zα̃m

∣∣∣∣∣
zα̃m=

√
[Dε+(γim)

2]/Cε

= 0. (51)

Note that:

∂

√
1
Cε

(
z2

z2−Dε/Cε

)
∂z

≤ 0. (52)

Eqs. (50)-(52) imply that Eq. (49) holds.
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Since α̃m < αε and H̃m ≤ Hε
α̃m
, part (ii) of Theorem 1 is applicable. Using α̃m and H̃m instead

of, respectively, αm and Hm in Eq. (13), and Eq. (26), the standard deviation of portfolio w̃ ε
m is:

σ̃εm =

− zα̃mD
ε

γimC
ε + z2α̃m

√
1
Cε + Dε

(γim)
2Cε

+

√
Dε

Cε

[(
Dε

γimC
ε − zα̃m

√
1
Cε + Dε

(γim)
2Cε

)2
−

z2
α̃m
−Dε/Cε

Cε

]
z2
α̃m
− Dε

Cε

. (53)

It follows from Eq. (53) and elementary algebra that:

σ̃εm =
− zα̃mD

ε

γimC
ε + z2α̃m

√
1
Cε + Dε

(γim)
2Cε

+ Dε

Cε

√[
zα̃m
γim
−
√

1
Cε + Dε

(γim)
2Cε

]2
z2
α̃m
− Dε

Cε

. (54)

Noting that α̃m ≤ αε,γ
i
m , we have zα̃m ≥

√
[Dε + (γim)2]/Cε. Since zα̃m ≥

√
[Dε + (γim)2]/Cε and

γim > 0, we obtain zα̃m
γim
≥
√

1
Cε + Dε

(γim)
2Cε
. Hence, it follows from Eq. (54) that Eq. (29) holds.

Proof of Theorem 4. For any account m ∈ {1, ...,M}, suppose that α̃m and H̃m satisfy, respec-

tively, Eqs. (25) and (26) for some constant γim > 0. Eqs. (30) and (31) follow from, respectively,

Eqs. (27) and (28). Using Eqs. (7) and (30), the aggregate portfolio is on the estimated MV

frontier. Hence, Eq. (32) follows from Eqs. (8) and (31).
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